Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.17.431722

ABSTRACT

The increasing numbers of infected cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses serious threats to public health and the global economy. Most SARS-CoV-2 neutralizing antibodies target the receptor binding domain (RBD) and some the N-terminal domain (NTD) of the spike protein, which is the major antigen of SARS-CoV-2. While the antibody response to RBD has been extensively characterized, the antigenicity and immunogenicity of the NTD protein are less well studied. Using 227 plasma samples from COVID-19 patients, we showed that SARS-CoV-2 NTD-specific antibodies could be induced during infection. As compared to the serological response to SARS-CoV-2 RBD, the SARS-CoV-2 NTD response is less cross-reactive with SARS-CoV. Furthermore, neutralizing antibodies are rarely elicited in a mice model when NTD is used as an immunogen. We subsequently demonstrate that NTD has an altered antigenicity when expressed alone. Overall, our results suggest that while NTD offers an alternative strategy for serology testing, it may not be suitable as an immunogen for vaccine development.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.05.20091355

ABSTRACT

COVID-19, caused by SARS-CoV-2, is an acute self-resolving disease in most of the patients, but some patients can develop a severe illness or even death. To characterize the host responses and identify potential biomarkers during disease progression, we performed a longitudinal transcriptome analysis for peripheral blood mononuclear cells (PBMCs) collected from 4 COVID-19 patients at 4 different time points from symptom onset to recovery. We found that PBMCs at different COVID-19 disease stages exhibited unique transcriptome characteristics. SARS-CoV-2 infection dysregulated innate immunity especially type I interferon response as well as the disturbed release of inflammatory cytokines and lipid mediators, and an aberrant increase of low-density neutrophils may cause tissue damage. Activation of cell death, exhaustion and migratory pathways may lead to the reduction of lymphocytes and dysfunction of adaptive immunity. COVID-19 induced hypoxia may exacerbate disorders in blood coagulation. Based on our analysis, we proposed a set of potential biomarkers for monitoring disease progression and predicting the risk of severity.


Subject(s)
COVID-19 , Hypoxia , Severe Acute Respiratory Syndrome , Blood Coagulation Disorders
SELECTION OF CITATIONS
SEARCH DETAIL